Cold Fusion Research Papers

This article is about the Fleischmann–Pons claims of nuclear fusion at room temperature, and subsequent research. For the original use of the term 'cold fusion', see Muon-catalyzed fusion. For all other definitions, see Cold fusion (disambiguation).

Not to be confused with Cold welding.

Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. This is compared with the "hot" fusion which takes place naturally within stars, under immense pressure and at temperatures of millions of degrees, and distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur.

In 1989 Martin Fleischmann (then one of the world's leading electrochemists) and Stanley Pons reported that their apparatus had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes.[1] They further reported measuring small amounts of nuclear reaction byproducts, including neutrons and tritium.[2] The small tabletop experiment involved electrolysis of heavy water on the surface of a palladium (Pd) electrode. The reported results received wide media attention, and raised hopes of a cheap and abundant source of energy.

Many scientists tried to replicate the experiment with the few details available. Hopes faded due to the large number of negative replications, the withdrawal of many reported positive replications, the discovery of flaws and sources of experimental error in the original experiment, and finally the discovery that Fleischmann and Pons had not actually detected nuclear reaction byproducts.[5] By late 1989, most scientists considered cold fusion claims dead,[7] and cold fusion subsequently gained a reputation as pathological science.[8][9] In 1989 the United States Department of Energy (DOE) concluded that the reported results of excess heat did not present convincing evidence of a useful source of energy and decided against allocating funding specifically for cold fusion. A second DOE review in 2004, which looked at new research, reached similar conclusions and did not result in DOE funding of cold fusion.[10]

A small community of researchers continues to investigate cold fusion, now often preferring the designation low-energy nuclear reactions (LENR) or condensed matter nuclear science (CMNS).[12][14][15] Since cold fusion articles are rarely published in peer-reviewed mainstream scientific journals, they do not attract the level of scrutiny expected for mainstream scientific publications.[16]


Nuclear fusion is normally understood to occur at temperatures in the tens of millions of degrees. Since the 1920s, there has been speculation that nuclear fusion might be possible at much lower temperatures by catalytically fusing hydrogen absorbed in a metal catalyst. In 1989, a claim by Stanley Pons and Martin Fleischmann (then one of the world's leading electrochemists) that such cold fusion had been observed caused a brief media sensation before the majority of scientists criticized their claim as incorrect after many found they could not replicate the excess heat. Since the initial announcement, cold fusion research has continued by a small community of researchers who believe that such reactions happen and hope to gain wider recognition for their experimental evidence.

Early research

The ability of palladium to absorb hydrogen was recognized as early as the nineteenth century by Thomas Graham.[18] In the late 1920s, two Austrian born scientists, Friedrich Paneth and Kurt Peters, originally reported the transformation of hydrogen into helium by nuclear catalysis when hydrogen was absorbed by finely divided palladium at room temperature. However, the authors later retracted that report, saying that the helium they measured was due to background from the air.

In 1927 Swedish scientist John Tandberg reported that he had fused hydrogen into helium in an electrolytic cell with palladium electrodes. On the basis of his work, he applied for a Swedish patent for "a method to produce helium and useful reaction energy". Due to Paneth and Peters's retraction and his inability to explain the physical process, his patent application was denied.[20] After deuterium was discovered in 1932, Tandberg continued his experiments with heavy water. The final experiments made by Tandberg with heavy water were similar to the original experiment by Fleischmann and Pons.[21] Fleischmann and Pons were not aware of Tandberg's work.[22][text 1][text 2]

The term "cold fusion" was used as early as 1956 in a New York Times article about Luis Alvarez's work on muon-catalyzed fusion.Paul Palmer and then Steven Jones of Brigham Young University used the term "cold fusion" in 1986 in an investigation of "geo-fusion", the possible existence of fusion involving hydrogen isotopes in a planetary core. In his original paper on this subject with Clinton Van Siclen, submitted in 1985, Jones had coined the term "piezonuclear fusion".[25]

Fleischmann–Pons experiment

The most famous cold fusion claims were made by Stanley Pons and Martin Fleischmann in 1989. After a brief period of interest by the wider scientific community, their reports were called into question by nuclear physicists. Pons and Fleischmann never retracted their claims, but moved their research program to France after the controversy erupted.

Events preceding announcement

Martin Fleischmann of the University of Southampton and Stanley Pons of the University of Utah hypothesized that the high compression ratio and mobility of deuterium that could be achieved within palladium metal using electrolysis might result in nuclear fusion. To investigate, they conducted electrolysis experiments using a palladium cathode and heavy water within a calorimeter, an insulated vessel designed to measure process heat. Current was applied continuously for many weeks, with the heavy water being renewed at intervals. Some deuterium was thought to be accumulating within the cathode, but most was allowed to bubble out of the cell, joining oxygen produced at the anode.[27] For most of the time, the power input to the cell was equal to the calculated power leaving the cell within measurement accuracy, and the cell temperature was stable at around 30 °C. But then, at some point (in some of the experiments), the temperature rose suddenly to about 50 °C without changes in the input power. These high temperature phases would last for two days or more and would repeat several times in any given experiment once they had occurred. The calculated power leaving the cell was significantly higher than the input power during these high temperature phases. Eventually the high temperature phases would no longer occur within a particular cell.[27]

In 1988 Fleischmann and Pons applied to the United States Department of Energy for funding towards a larger series of experiments. Up to this point they had been funding their experiments using a small device built with $100,000 out-of-pocket. The grant proposal was turned over for peer review, and one of the reviewers was Steven Jones of Brigham Young University. Jones had worked for some time on muon-catalyzed fusion, a known method of inducing nuclear fusion without high temperatures, and had written an article on the topic entitled "Cold nuclear fusion" that had been published in Scientific American in July 1987. Fleischmann and Pons and co-workers met with Jones and co-workers on occasion in Utah to share research and techniques. During this time, Fleischmann and Pons described their experiments as generating considerable "excess energy", in the sense that it could not be explained by chemical reactions alone.[27] They felt that such a discovery could bear significant commercial value and would be entitled to patent protection. Jones, however, was measuring neutron flux, which was not of commercial interest.[clarification needed] To avoid future problems, the teams appeared to agree to simultaneously publish their results, though their accounts of their 6 March meeting differ.


In mid-March 1989, both research teams were ready to publish their findings, and Fleischmann and Jones had agreed to meet at an airport on 24 March to send their papers to Nature via FedEx. Fleischmann and Pons, however, pressured by the University of Utah, which wanted to establish priority on the discovery,[30] broke their apparent agreement, submitting their paper to the Journal of Electroanalytical Chemistry on 11 March, and disclosing their work via a press release[31] and press conference on 23 March. Jones, upset, faxed in his paper to Nature after the press conference.

Fleischmann and Pons' announcement drew wide media attention.[32] But the 1986 discovery of high-temperature superconductivity had made the scientific community more open to revelations of unexpected scientific results that could have huge economic repercussions and that could be replicated reliably even if they had not been predicted by established theories.[33] Many scientists were also reminded of the Mössbauer effect, a process involving nuclear transitions in a solid. Its discovery 30 years earlier had also been unexpected, though it was quickly replicated and explained within the existing physics framework.

The announcement of a new purported clean source of energy came at a crucial time: adults still remembered the 1973 oil crisis and the problems caused by oil dependence, anthropogenic global warming was starting to become notorious, the anti-nuclear movement was labeling nuclear power plants as dangerous and getting them closed, people had in mind the consequences of strip mining, acid rain, the greenhouse effect and the Exxon Valdez oil spill, which happened the day after the announcement.[35] In the press conference, Chase N. Peterson, Fleischmann and Pons, backed by the solidity of their scientific credentials, repeatedly assured the journalists that cold fusion would solve environmental problems, and would provide a limitless inexhaustible source of clean energy, using only seawater as fuel.[36] They said the results had been confirmed dozens of times and they had no doubts about them. In the accompanying press release Fleischmann was quoted saying: "What we have done is to open the door of a new research area, our indications are that the discovery will be relatively easy to make into a usable technology for generating heat and power, but continued work is needed, first, to further understand the science and secondly, to determine its value to energy economics."[31]

Response and fallout

Although the experimental protocol had not been published, physicists in several countries attempted, and failed, to replicate the excess heat phenomenon. The first paper submitted to Nature reproducing excess heat, although it passed peer-review, was rejected because most similar experiments were negative and there were no theories that could explain a positive result;[notes 1] this paper was later accepted for publication by the journal Fusion Technology. Nathan Lewis, professor of chemistry at the California Institute of Technology, led one of the most ambitious validation efforts, trying many variations on the experiment without success,[39] while CERN physicist Douglas R. O. Morrison said that "essentially all" attempts in Western Europe had failed. Even those reporting success had difficulty reproducing Fleischmann and Pons' results. On 10 April 1989, a group at Texas A&M University published results of excess heat and later that day a group at the Georgia Institute of Technology announced neutron production—the strongest replication announced up to that point due to the detection of neutrons and the reputation of the lab. On 12 April Pons was acclaimed at an ACS meeting. But Georgia Tech retracted their announcement on 13 April, explaining that their neutron detectors gave false positives when exposed to heat.[42] Another attempt at independent replication, headed by Robert Huggins at Stanford University, which also reported early success with a light water control,[43] became the only scientific support for cold fusion in 26 April US Congress hearings.[text 3] But when he finally presented his results he reported an excess heat of only one degree celsius, a result that could be explained by chemical differences between heavy and light water in the presence of lithium.[notes 2] He had not tried to measure any radiation[44] and his research was derided by scientists who saw it later.[45] For the next six weeks, competing claims, counterclaims, and suggested explanations kept what was referred to as "cold fusion" or "fusion confusion" in the news.[46]

In April 1989, Fleischmann and Pons published a "preliminary note" in the Journal of Electroanalytical Chemistry. This paper notably showed a gamma peak without its corresponding Compton edge, which indicated they had made a mistake in claiming evidence of fusion byproducts.[47] Fleischmann and Pons replied to this critique,[48] but the only thing left clear was that no gamma ray had been registered and that Fleischmann refused to recognize any mistakes in the data.[49] A much longer paper published a year later went into details of calorimetry but did not include any nuclear measurements.[27]

Nevertheless, Fleischmann and Pons and a number of other researchers who found positive results remained convinced of their findings. The University of Utah asked Congress to provide $25 million to pursue the research, and Pons was scheduled to meet with representatives of President Bush in early May.

On 30 April 1989 cold fusion was declared dead by the New York Times. The Times called it a circus the same day, and the Boston Herald attacked cold fusion the following day.[50]

On 1 May 1989 the American Physical Society held a session on cold fusion in Baltimore, including many reports of experiments that failed to produce evidence of cold fusion. At the end of the session, eight of the nine leading speakers stated that they considered the initial Fleischmann and Pons claim dead, with the ninth, Johann Rafelski, abstaining.Steven E. Koonin of Caltech called the Utah report a result of "the incompetence and delusion of Pons and Fleischmann," which was met with a standing ovation.Douglas R. O. Morrison, a physicist representing CERN, was the first to call the episode an example of pathological science.[52]

On 4 May, due to all this new criticism, the meetings with various representatives from Washington were cancelled.

From 8 May only the A&M tritium results kept cold fusion afloat.

In July and November 1989, Nature published papers critical of cold fusion claims. Negative results were also published in several other scientific journals including Science, Physical Review Letters, and Physical Review C (nuclear physics).[notes 3]

In August 1989, in spite of this trend, the state of Utah invested $4.5 million to create the National Cold Fusion Institute.

The United States Department of Energy organized a special panel to review cold fusion theory and research. The panel issued its report in November 1989, concluding that results as of that date did not present convincing evidence that useful sources of energy would result from the phenomena attributed to cold fusion. The panel noted the large number of failures to replicate excess heat and the greater inconsistency of reports of nuclear reaction byproducts expected by established conjecture. Nuclear fusion of the type postulated would be inconsistent with current understanding and, if verified, would require established conjecture, perhaps even theory itself, to be extended in an unexpected way. The panel was against special funding for cold fusion research, but supported modest funding of "focused experiments within the general funding system." Cold fusion supporters continued to argue that the evidence for excess heat was strong, and in September 1990 the National Cold Fusion Institute listed 92 groups of researchers from 10 different countries that had reported corroborating evidence of excess heat, but they refused to provide any evidence of their own arguing that it could endanger their patents.[61] However, no further DOE nor NSF funding resulted from the panel's recommendation. By this point, however, academic consensus had moved decidedly toward labeling cold fusion as a kind of "pathological science".[8]

In March 1990 Michael H. Salamon, a physicist from the University of Utah, and nine co-authors reported negative results.[64] University faculty were then "stunned" when a lawyer representing Pons and Fleischmann demanded the Salamon paper be retracted under threat of a lawsuit. The lawyer later apologized; Fleischmann defended the threat as a legitimate reaction to alleged bias displayed by cold-fusion critics.[65]

In early May 1990 one of the two A&M researchers, Kevin Wolf, acknowledged the possibility of spiking, but said that the most likely explanation was tritium contamination in the palladium electrodes or simply contamination due to sloppy work.[66] In June 1990 an article in Science by science writer Gary Taubes destroyed the public credibility of the A&M tritium results when it accused its group leader John Bockris and one of his graduate students of spiking the cells with tritium.[67] In October 1990 Wolf finally said that the results were explained by tritium contamination in the rods. An A&M cold fusion review panel found that the tritium evidence was not convincing and that, while they couldn't rule out spiking, contamination and measurements problems were more likely explanations,[text 4] and Bockris never got support from his faculty to resume his research.

On 30 June 1991 the National Cold Fusion Institute closed after it ran out of funds;[69] it found no excess heat, and its reports of tritium production were met with indifference.

On 1 January 1991 Pons left the University of Utah and went to Europe. In 1992, Pons and Fleischman resumed research with Toyota Motor Corporation's IMRA lab in France. Fleischmann left for England in 1995, and the contract with Pons was not renewed in 1998 after spending $40 million with no tangible results. The IMRA laboratory stopped cold fusion research in 1998 after spending £12 million. Pons has made no public declarations since, and only Fleischmann continued giving talks and publishing papers.

Mostly in the 1990s, several books were published that were critical of cold fusion research methods and the conduct of cold fusion researchers.[73] Over the years, several books have appeared that defended them.[74] Around 1998, the University of Utah had already dropped its research after spending over $1 million, and in the summer of 1997, Japan cut off research and closed its own lab after spending $20 million.[75]

Subsequent research

A 1991 review by a cold fusion proponent had calculated "about 600 scientists" were still conducting research. After 1991, cold fusion research only continued in relative obscurity, conducted by groups that had increasing difficulty securing public funding and keeping programs open. These small but committed groups of cold fusion researchers have continued to conduct experiments using Fleischmann and Pons electrolysis set-ups in spite of the rejection by the mainstream community.The Boston Globe estimated in 2004 that there were only 100 to 200 researchers working in the field, most suffering damage to their reputation and career. Since the main controversy over Pons and Fleischmann had ended, cold fusion research has been funded by private and small governmental scientific investment funds in the United States, Italy, Japan, and India.

Current research

Cold fusion research continues today in a few specific venues, but the wider scientific community has generally marginalized the research being done and researchers have had difficulty publishing in mainstream journals.[7] The remaining researchers often term their field Low Energy Nuclear Reactions (LENR), Chemically Assisted Nuclear Reactions (CANR),Lattice Assisted Nuclear Reactions (LANR), Condensed Matter Nuclear Science (CMNS) or Lattice Enabled Nuclear Reactions; one of the reasons being to avoid the negative connotations associated with "cold fusion". The new names avoid making bold implications, like implying that fusion is actually occurring.[81]

The researchers who continue acknowledge that the flaws in the original announcement are the main cause of the subject's marginalization, and they complain of a chronic lack of funding[82] and no possibilities of getting their work published in the highest impact journals. University researchers are often unwilling to investigate cold fusion because they would be ridiculed by their colleagues and their professional careers would be at risk.[84] In 1994, David Goodstein, a professor of physics at Caltech, advocated for increased attention from mainstream researchers and described cold fusion as:

A pariah field, cast out by the scientific establishment. Between cold fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here.

United States

United States Navy researchers at the Space and Naval Warfare Systems Center (SPAWAR) in San Diego have been studying cold fusion since 1989.[85] In 2002 they released a two-volume report, "Thermal and nuclear aspects of the Pd/D2O system," with a plea for funding.[86] This and other published papers prompted a 2004 Department of Energy (DOE) review.

In August 2003, the U.S. Secretary of Energy, Spencer Abraham, ordered the DOE to organize a second review of the field. This was thanks to an April 2003 letter sent by MIT's Peter L. Hagelstein,[88]:3 and the publication of many new papers, including the Italian ENEA and other researchers in the 2003 International Cold Fusion Conference,[89] and a two-volume book by U.S. SPAWAR in 2002. Cold fusion researchers were asked to present a review document of all the evidence since the 1989 review. The report was released in 2004. The reviewers were "split approximately evenly" on whether the experiments had produced energy in the form of heat, but "most reviewers, even those who accepted the evidence for excess power production, 'stated that the effects are not repeatable, the magnitude of the effect has not increased in over a decade of work, and that many of the reported experiments were not well documented.'" In summary, reviewers found that cold fusion evidence was still not convincing 15 years later, and they didn't recommend a federal research program. They only recommended that agencies consider funding individual well-thought studies in specific areas where research "could be helpful in resolving some of the controversies in the field". They summarized its conclusions thus:

While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review. The current reviewers identified a number of basic science research areas that could be helpful in resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals.

— Report of the Review of Low Energy Nuclear Reactions, US Department of Energy, December 2004

Cold fusion researchers placed a "rosier spin" on the report, noting that they were finally being treated like normal scientists, and that the report had increased interest in the field and caused "a huge upswing in interest in funding cold fusion research." However, in a 2009 BBC article on an American Chemical Society's meeting on cold fusion, particle physicist Frank Close was quoted stating that the problems that plagued the original cold fusion announcement were still happening: results from studies are still not being independently verified and inexplicable phenomena encountered are being labelled as "cold fusion" even if they are not, in order to attract the attention of journalists.[82]

In February 2012, millionaire Sidney Kimmel, convinced that cold fusion was worth investing in by a 19 April 2009 interview with physicist Robert Duncan on the US news-show 60 Minutes,[92] made a grant of $5.5 million to the University of Missouri to establish the Sidney Kimmel Institute for Nuclear Renaissance (SKINR). The grant was intended to support research into the interactions of hydrogen with palladium, nickel or platinum under extreme conditions.[92][93][94] In March 2013 Graham K. Hubler, a nuclear physicist who worked for the Naval Research Laboratory for 40 years, was named director.[95] One of the SKINR projects is to replicate a 1991 experiment in which a professor associated with the project, Mark Prelas says bursts of millions of neutrons a second were recorded, which was stopped because "his research account had been frozen". He claims that the new experiment has already seen "neutron emissions at similar levels to the 1991 observation".[96][97]

In May 2016, the United States House Committee on Armed Services, in its report on the 2017 National Defense Authorization Act, directed the Secretary of Defense to "provide a briefing on the military utility of recent U.S. industrial base LENR advancements to the House Committee on Armed Services by September 22, 2016."[98][99]


Since the Fleischmann and Pons announcement, the Italian National agency for new technologies, energy and sustainable economic development (ENEA) has funded Franco Scaramuzzi's research into whether excess heat can be measured from metals loaded with deuterium gas.[100] Such research is distributed across ENEA departments, CNR laboratories, INFN, universities and industrial laboratories in Italy, where the group continues to try to achieve reliable reproducibility (i.e. getting the phenomenon to happen in every cell, and inside a certain frame of time). In 2006–2007, the ENEA started a research program which claimed to have found excess power of up to 500 percent, and in 2009, ENEA hosted the 15th cold fusion conference.[89][101]


Between 1992 and 1997, Japan's Ministry of International Trade and Industry sponsored a "New Hydrogen Energy (NHE)" program of US$20 million to research cold fusion.[102] Announcing the end of the program in 1997, the director and one-time proponent of cold fusion research Hideo Ikegami stated "We couldn't achieve what was first claimed in terms of cold fusion. (...) We can't find any reason to propose more money for the coming year or for the future."[102] In 1999 the Japan C-F Research Society was established to promote the independent research into cold fusion that continued in Japan.[103] The society holds annual meetings.[104] Perhaps the most famous Japanese cold fusion researcher is Yoshiaki Arata, from Osaka University, who claimed in a demonstration to produce excess heat when deuterium gas was introduced into a cell containing a mixture of palladium and zirconium oxide,[text 5] a claim supported by fellow Japanese researcher Akira Kitamura of Kobe University and McKubre at SRI.


In the 1990s India stopped its research in cold fusion at the Bhabha Atomic Research Centre because of the lack of consensus among mainstream scientists and the US denunciation of the research. Yet, in 2008, the National Institute of Advanced Studies recommended that the Indian government revive this research. Projects were commenced at the Chennai's Indian Institute of Technology, the Bhabha Atomic Research Centre and the Indira Gandhi Centre for Atomic Research. However, there is still skepticism among scientists and, for all practical purposes, research has stalled since the 1990s.[107] A special section in the Indian multidisciplinary journal Current Science published 33 cold fusion papers in 2015 by major cold fusion researchers including several Indian researchers.[108]

Reported results

A cold fusion experiment usually includes:

Electrolysis cells can be either open cell or closed cell. In open cell systems, the electrolysis products, which are gaseous, are allowed to leave the cell. In closed cell experiments, the products are captured, for example by catalytically recombining the products in a separate part of the experimental system. These experiments generally strive for a steady state condition, with the electrolyte being replaced periodically. There are also "heat-after-death" experiments, where the evolution of heat is monitored after the electric current is turned off.

The most basic setup of a cold fusion cell consists of two electrodes submerged in a solution containing palladium and heavy water. The electrodes are then connected to a power source to transmit electricity from one electrode to the other through the solution.[109] Even when anomalous heat is reported, it can take weeks for it to begin to appear—this is known as the "loading time," the time required to saturate the palladium electrode with hydrogen (see "Loading ratio" section).

The Fleischmann and Pons early findings regarding helium, neutron radiation and tritium were never replicated satisfactorily, and its levels were too low for the claimed heat production and inconsistent with each other.[110] Neutron radiation has been reported in cold fusion experiments at very low levels using different kinds of detectors, but levels were too low, close to background, and found too infrequently to provide useful information about possible nuclear processes.[111]

Excess heat and energy production

An excess heat observation is based on an energy balance. Various sources of energy input and output are continuously measured. Under normal conditions, the energy input can be matched to the energy output to within experimental error. In experiments such as those run by Fleischmann and Pons, an electrolysis cell operating steadily at one temperature transitions to operating at a higher temperature with no increase in applied current.[27] If the higher temperatures were real, and not an experimental artifact, the energy balance would show an unaccounted term. In the Fleischmann and Pons experiments, the rate of inferred excess heat generation was in the range of 10–20% of total input, though this could not be reliably replicated by most researchers. Researcher Nathan Lewis discovered that the excess heat in Fleischmann and Pons's original paper was not measured, but estimated from measurements that didn't have any excess heat.

Unable to produce excess heat or neutrons, and with positive experiments being plagued by errors and giving disparate results, most researchers declared that heat production was not a real effect and ceased working on the experiments.[114] In 1993, after their original report, Fleischmann reported "heat-after-death" experiments—where excess heat was measured after the electric current supplied to the electrolytic cell was turned off. This type of report has also become part of subsequent cold fusion claims.[116]

Helium, heavy elements, and neutrons

Known instances of nuclear reactions, aside from producing energy, also produce nucleons and particles on readily observable ballistic trajectories. In support of their claim that nuclear reactions took place in their electrolytic cells, Fleischmann and Pons reported a neutron flux of 4,000 neutrons per second, as well as detection of tritium. The classical branching ratio for previously known fusion reactions that produce tritium would predict, with 1 watt of power, the production of 1012 neutrons per second, levels that would have been fatal to the researchers.[117] In 2009, Mosier-Boss et al. reported what they called the first scientific report of highly energetic neutrons, using CR-39 plastic radiation detectors,[85] but the claims cannot be validated without a quantitative analysis of neutrons.

Several medium and heavy elements like calcium, titanium, chromium, manganese, iron, cobalt, copper and zinc have been reported as detected by several researchers, like Tadahiko Mizuno or George Miley. The report presented to the United States Department of Energy (DOE) in 2004 indicated that deuterium-loaded foils could be used to detect fusion reaction products and, although the reviewers found the evidence presented to them as inconclusive, they indicated that those experiments did not use state-of-the-art techniques.

In response to doubts about the lack of nuclear products, cold fusion researchers have tried to capture and measure nuclear products correlated with excess heat. Considerable attention has been given to measuring 4He production. However, the reported levels are very near to background, so contamination by trace amounts of helium normally present in the air cannot be ruled out. In the report presented to the DOE in 2004, the reviewers' opinion was divided on the evidence for 4He; with the most negative reviews concluding that although the amounts detected were above background levels, they were very close to them and therefore could be caused by contamination from air.

One of the main criticisms of cold fusion was that deuteron-deuteron fusion into helium was expected to result in the production of gamma rays—which were not observed and were not observed in subsequent cold fusion experiments.[123] Cold fusion researchers have since claimed to find X-rays, helium, neutrons and nuclear transmutations. Some researchers also claim to have found them using only light water and nickel cathodes. The 2004 DOE panel expressed concerns about the poor quality of the theoretical framework cold fusion proponents presented to account for the lack of gamma rays.

Proposed mechanisms

Researchers in the field do not agree on a theory for cold fusion. One proposal considers that hydrogen and its isotopes can be absorbed in certain solids, including palladium hydride, at high densities. This creates a high partial pressure, reducing the average separation of hydrogen isotopes. However, the reduction in separation is not enough by a factor of ten to create the fusion rates claimed in the original experiment.[127] It was also proposed that a higher density of hydrogen inside the palladium and a lower potential barrier could raise the possibility of fusion at lower temperatures than expected from a simple application of Coulomb's law. Electron screening of the positive hydrogen nuclei by the negative electrons in the palladium lattice was suggested to the 2004 DOE commission, but the panel found the theoretical explanations not convincing and inconsistent with current physics theories.


Criticism of cold fusion claims generally take one of two forms: either pointing out the theoretical implausibility that fusion reactions have occurred in electrolysis set-ups or criticizing the excess heat measurements as being spurious, erroneous, or due to poor methodology or controls. There are a couple of reasons why known fusion reactions are an unlikely explanation for the excess heat and associated cold fusion claims.[text 6]

Repulsion forces

Because nuclei are all positively charged, they strongly repel one another. Normally, in the absence of a catalyst such as a muon, very high kinetic energies are required to overcome this charged repulsion.[129] Extrapolating from known fusion rates, the rate for uncatalyzed fusion at room-temperature energy would be 50 orders of magnitude lower than needed to account for the reported excess heat.[130] In muon-catalyzed fusion there are more fusions because the presence of the muon causes deuterium nuclei to be 207 times closer than in ordinary deuterium gas.[131] But deuterium nuclei inside a palladium lattice are further apart than in deuterium gas, and there should be fewer fusion reactions, not more.[127]

Paneth and Peters in the 1920s already knew that palladium can absorb up to 900 times its own volume of hydrogen gas, storing it at several thousands of times the atmospheric pressure. This led them to believe that they could increase the nuclear fusion rate by simply loading palladium rods with hydrogen gas. Tandberg then tried the same experiment but used electrolysis to make palladium absorb more deuterium and force the deuterium further together inside the rods, thus anticipating the main elements of Fleischmann and Pons' experiment.[21] They all hoped that pairs of hydrogen nuclei would fuse together to form helium, which at the time was needed in Germany to fill zeppelins, but no evidence of helium or of increased fusion rate was ever found.

This was also the belief of geologist Palmer, who convinced Steven Jones that the helium-3 occurring naturally in Earth perhaps came from fusion involving hydrogen isotopes inside catalysts like nickel and palladium. This led their team in 1986 to independently make the same experimental setup as Fleischmann and Pons (a palladium cathode submerged in heavy water, absorbing deuterium via electrolysis). Fleischmann and Pons had much the same belief, but they calculated the pressure to be of 1027 atmospheres, when cold fusion experiments only achieve a loading ratio of one to one, which only has between 10,000 and 20,000 atmospheres.[text 7]John R. Huizenga says they had misinterpreted the Nernst equation, leading them to believe that there was enough pressure to bring deuterons so close to each other that there would be spontaneous fusions.

Lack of expected reaction products

Conventional deuteron fusion is a two-step process,[text 6] in which an unstable high energy intermediary is formed:

D + D → 4He* + 24 MeV

Experiments have observed only three decay pathways for this excited-state nucleus, with the branching ratio showing the probability that any given intermediate follows a particular pathway.[text 6] The products formed via these decay pathways are:

4He* → n + 3He + 3.3 MeV (ratio=50%)
4He* → p + 3H + 4.0 MeV (ratio=50%)
4He*4He + γ + 24 MeV (ratio=10−6)

Only about one in one million of the intermediaries decay along the third pathway, making its products comparatively rare when compared to the other paths. This result is consistent with the predictions of the Bohr model.[text 8] If one watt (1 eV = 1.602 x 10−19 joule) of nuclear power were produced from deuteron fusion consistent with known branching ratios, the resulting neutron and tritium (3H) production would be easily measured. Some researchers reported detecting 4He but without the expected neutron or tritium production; such a result would require branching ratios strongly favouring the third pathway, with the actual rates of the first two pathways lower by at least five orders of magnitude than observations from other experiments, directly contradicting both theoretically predicted and observed branching probabilities.[text 6] Those reports of 4He production did not include detection of gamma rays, which would require the third pathway to have been changed somehow so that gamma rays are no longer emitted.[text 6]

The known rate of the decay process together with the inter-atomic spacing in a metallic crystal makes heat transfer of the 24 MeV excess energy into the host metal lattice prior to the intermediary's decay inexplicable in terms of conventional understandings of momentum and energy transfer,[138] and even then there would be measurable levels of radiation.[139] Also, experiments indicate that the ratios of deuterium fusion remain constant at different energies.[140] In general, pressure and chemical environment only cause small changes to fusion ratios.[140] An early explanation invoked the Oppenheimer–Phillips process at low energies, but its magnitude was too small to explain the altered ratios.

Setup of experiments

Cold fusion setups utilize an input power source (to ostensibly provide activation energy), a platinum groupelectrode, a deuterium or hydrogen source, a calorimeter, and, at times, detectors to look for byproducts such as helium or neutrons. Critics have variously taken issue with each of these aspects and have asserted that there has not yet been a consistent reproduction of claimed cold fusion results in either energy output or byproducts. Some cold fusion researchers who claim that they can consistently measure an excess heat effect have argued that the apparent lack of reproducibility might be attributable to a lack of quality control in the electrode metal or the amount of hydrogen or deuterium loaded in the system. Critics have further taken issue with what they describe as mistakes or errors of interpretation that cold fusion researchers have made in calorimetry analyses and energy budgets.


In 1989, after Fleischmann and Pons had made their claims, many research groups tried to reproduce the Fleischmann-Pons experiment, without success. A few other research groups, however, reported successful reproductions of cold fusion during this time. In July 1989, an Indian group from the Bhabha Atomic Research Centre (P. K. Iyengar and M. Srinivasan) and in October 1989, John Bockris' group from Texas A&M University reported on the creation of tritium. In December 1990, professor Richard Oriani of the University of Minnesota reported excess heat.

Groups that did report successes found that some of their cells were producing the effect, while other cells that were built exactly the same and used the same materials were not producing the effect. Researchers that continued to work on the topic have claimed that over the years many successful replications have been made, but still have problems getting reliable replications.Reproducibility is one of the main principles of the scientific method, and its lack led most physicists to believe that the few positive reports could be attributed to experimental error.[text 9] The DOE 2004 report said among its conclusions and recommendations:

"Ordinarily, new scientific discoveries are claimed to be consistent and reproducible; as a result, if the experiments are not complicated, the discovery can usually be confirmed or disproved in a few months. The claims of cold fusion, however, are unusual in that even the strongest proponents of cold fusion assert that the experiments, for unknown reasons, are not consistent and reproducible at the present time. (...) Internal inconsistencies and lack of predictability and reproducibility remain serious concerns. (...) The Panel recommends that the cold fusion research efforts in the area of heat production focus primarily on confirming or disproving reports of excess heat."

Loading ratio

Cold fusion researchers (McKubre since 1994,ENEA in 2011[89]) have speculated that a cell that is loaded with a deuterium/palladium ratio lower than 100% (or 1:1) will not produce excess heat. Since most of the negative replications from 1989–1990 did not report their ratios, this has been proposed as an explanation for failed replications. This loading ratio is hard to obtain, and some batches of palladium never reach it because the pressure causes cracks in the palladium, allowing the deuterium to escape. Fleischmann and Pons never disclosed the deuterium/palladium ratio achieved in their cells, there are no longer any batches of the palladium used by Fleischmann and Pons (because the supplier uses now a different manufacturing process), and researchers still have problems finding batches of palladium that achieve heat production reliably.

Misinterpretation of data

Some research groups initially reported that they had replicated the Fleischmann and Pons results but later retracted their reports and offered an alternative explanation for their original positive results. A group at Georgia Tech found problems with their neutron detector, and Texas A&M discovered bad wiring in their thermometers. These retractions, combined with negative results from some famous laboratories, led most scientists to conclude, as early as 1989, that no positive result should be attributed to cold fusion.

Calorimetry errors

The calculation of excess heat in electrochemical cells involves certain assumptions.[148] Errors in these assumptions have been offered as non-nuclear explanations for excess heat.

One assumption made by Fleischmann and Pons is that the efficiency of electrolysis is nearly 100%, meaning nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible resistive heating and substantially all the electrolysis product leaving the cell unchanged.[27] This assumption gives the amount of energy expended converting liquid D2O into gaseous D2 and O2.[149] The efficiency of electrolysis is less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolysis experiments.

Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter.[27] This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made.[153] This can happen, for example, if fluid circulation within the cell becomes significantly altered.

Diagram of an open-type calorimeter used at the New Hydrogen Energy Institute in Japan
Electrolysis cell schematic
"Triple tracks" in a CR-39 plastic radiation detector claimed as evidence for neutron emission from palladium deuteride
Michael McKubre working on deuterium gas-based cold fusion cell used by SRI International

Aftenposten, a mainstream newspaper in Norway is publishing on Cold Fusion.

Here is a ‘translation patched up with contextual English/Physics parlance’ of the April 2, 2016, Norwegian report that features an interview with Physicist Sindre Zeiner-Gundersen, who revealed details of an operating experimental cold fusion device in Norway generating 20 times more energy than required to activate it!

According to Scandinavian physicists ‘cold fusion’ happens due to the formation of ultradense hydrogen/deuterium as described in the widely acclaimed work and theoretical understanding by professor Svein Olafsson (Sindre’s Phd. supervisor in Iceland) and Norway’s Professor Svein Holmlid.

Finally a proven testable theory for cold fusion that occurs in microscopic stars inside ordinary metals!

Norway’s behind the scenes cold fusion industrial R&D Laboratory ‘in the smoke’ of Hamar.

Is this the solution to all our energy problems? Can two guys in a small industrial office be sitting on the solution to the climate crisis? The ‘cold fusion’ of ultra dense hydrogen will give us cars and aircraft with unlimited range. Heat and electricity for houses will allow them to be unplugged from power company networks. Or is it just wishful thinking?

In an industrial building,  ‘in smoke’ meaning hidden away in a Norwegian industrial district not academia, that no one in the Norwegian public has heard about, lies the commercialization R&D laboratory.  There attending to the engineering facility is PhD student Sindre Zeiner-Gundersen bent over a small reactor of thick metal.

Even before newly funded research began, he experienced that up to 20 times as much energy coming out of the reactor as what he put in. Was it cold fusion he witnessed? Aftenposten wrote last summer about the research in this field, which is not accepted in science excellent (polite) company. But now the American Physicist Society, APS, which until this Norwegian work emerged has been dismissive, has begun to publish works of scientists who show the effect is real and offer a viable theoretical mechanism proven via classical physics procedures.

Editors note: Holmlid’s elegant table top fusion reactor and detector with schematic, can be easily and relatively inexpensively built of ‘off-the-shelf’ high vacuum parts. A wonderful contribution to global energy ‘crowd science’. With Prof. Holmlid’s offer of coaching and help to those reproducing the work this revelation of every detail will very quickly separate the pathological skeptics and physics trolls from the ‘earnest and honest scientists’! – click to enlarge

{ More device details are available via the patent filing and Prof Holmlid’s reference library}

The closest thing to the theoretical work and testable supporting data of Holmlid is the mythical energy announced to the world more than 25 years ago by Martin Fleischmann and Stanley Pons as cold fusion (it also goes under the name LENR for Low Energy Nuclear Reaction). Cold fusion occurs when hydrogen (in the form of deuterium) is loaded into metals and ‘energized’ in one form or another. Hydrogen atoms merge with each other and simultaneously releases an enormous amount of energy that follows Einstein’s famouse E=mC2 equation.

The energy released is far, far greater than that applied to create the reaction(s). It’s like fire in the fireplace, really, just that nuclear fusion, delivers a million times more energy than any chemical process of combustion. Editors note: Imagine your homes winters firewood supply multiplied by one million times, enough wood to bury the city of Gothenburg for each household contained instead in a single cup full of ‘heavy water.’

Unlike combustion cold fusion does not quickly run out of fuel. As many other cold fusion researchers have reported in over 1000 published scientific papers Zeiner-Gundersen have run experiments for  long times where they measured an energy production that is so high that it is impossible to completely explain it as any known (or conceivable) chemical reaction.

This Will change all energy

“The so-called Coulomb barrier between two atom nuclei suggests that what we see here is not possible. That I acknowledge. But I note that it still happens. Therefore we have focused on finding bugs in our own methods, through probably 1,000 days of tests. The result varies, but we note still that the reaction takes place. I’m guessing that within three years, ‘people everywhere’ will be thinking completely differently about energy than today. Perhaps as soon 5-10 years we will see this used in aerospace, for the propulsion of vehicles, boats and aircraft,” says Sindre Zeiner-Gundersen.

Mohammed Bin Salman, Saudi Arabia’s Deputy Crown Prince announces Saudi is moving oil wealth into new sectors. Source: Saudi Arabia’s Royal Court – click to read more.

Editors Note: Is Cold Fusion an energy black swan? A series of reports reveals how seriously some of the world is taking Cold Fusion transformative technology is revealed in news from Saudi Arabia’s Royal family and it’s rapid development of the world’s largest sovereign wealth fund that will rapidly make trillions in foreign investments to move the country quickly away from it’s dependence on oil! It’s not just oil sheiks who are interested, Bill Gates of Microsoft, reportedly the richest man on Earth has personally visited cold fusion labs in Europe, indulging his interest and history with ‘black swan’ tech.

A brief history

Researchers who have been pursuing cold fusion energy for decades claims that it will be possible to create an energy that is so enormously powerful and so cheap that we will be able to provide enough energy to power a city like Hamar (where this lab research is being done) for a year using the energy of cold fusion energy that comes from a glass of water – without harmful radiation or emission. Such energy would be so potent that it can become immediately economically affordable to pull harmful CO2 back from the atmosphere, or to make saltwater into freshwater. It will simply be the solution to all our energy problems.

Up to now Cold Fusion/LENR researchers have had difficulty getting published material in major scientific journals. They acknowledge as well that they have lacked a credible working theory behind the experimental results they observe in the lab. Most scientists believe that nuclear fusion will in fact not be possible without massive energy levels that simply can not be produced at any laboratory table. Take for example the work of physicists at CERN.

The results that have come since last summer are still more remarkable and carries with it a much higher degree of scientific credibility than before. Meanwhile, the team here are the only Norwegian physicists who will comment on the case that is based on their new and solid scientific findings now published and most possibly due to this new energy source.

Rydberg Matter explains the impossible chemistry

Rydberg Matter Diagrams according to Holmlid et al. Such hydrogen matter is more dense than what is found in the core of stars. This shows how normally separated atomic nuclei can be squashed so closely together, in microscopically small but atomicly huge domains, such that cold ‘micro’ fusion is easily be made to occur and be controlled. Click to enlarge

Sindre Zeiner-Gundersen is pursuing a genuine PhD degree at the so-called Rydberg Matter (see graphic) at the University of Iceland. Rydbergmaterie is probably a precursor to cold fusion, according Zeiner-Gundersen. He also believes his supervisor in Iceland, Svein Olafsson. Olafsson is a professor of solid state nuclear physics and has since 2014 made efforts which also confirms cold fusion. Olafsson, who has been chairman of the Icelandic physicist Association for several years and has also done experiments at Isolde laboratory CERN, picks happily up the phone when Aftenposten rings.

For me the Cold Fusion/LENR effect is an experimental reality. I have studied some of the 500 – 1000 articles published in the field since 1989. We can already say that we have discovered so much enormous energy that this source within 5-10 years will transform all energy. But it will take time before the world understands it. You could compare it to when Wright brothers first flew. They flew in 1903. But it was not until 1908 that they broke through. People did not believe it before they even saw it. When such a breakthrough occurs in the public consciousness, there will be enormous resources to the field.

More than 400 scientists worldwide work on it but the pursuit of cold fusion comes at a price

Until now there have been very few and far between academics like Olafsson, who endorse cold fusion. It is taught at Massachusetts Institute of Technology (MIT), but at the start of the course students are warned that their choice of study might harm their career.

One of the reasons that Olafsson now may speak so cocksure about that which among mainstream physicists most perceived an impossibility, is that he is not alone anymore. For example, the American academic physicist Robert Duncan (Texas Tech) who like the American physicist association pointed out the need to make independent examination of the phenomenon before the mainstream is convinced.

We are now an informal network of some 400 physicists worldwide who work with matter and look at cold fusion as real, says Olafsson.

Prof. Holmlid of Gothenburg has shown highly reproducible production of mysterious muons. – click for more

Another reason why Olafsson feels confident the research is real is the work of Leif Holmlid. Holmlid is professor emeritus of chemistry at the University of Gothenburg and has a long career. He has both helped assess potential laureates for the Nobel Committee, and has published over 200 scientific papers. Unlike most Cold Fusion/LENR researchers, the work of both Olafsson and Holmlid very recently published their revolutionary work on Rdyberg Matter in the prestigious journals of the American Physical Society, with its 50,000 members it is the largest organization physicists in the world. There will be no more “mainstream” than that.

Holmlid would still rather not be called a Cold Fusion/LENR researcher or associated with the concept of cold fusion. (Perhaps he sat in on that course at MIT.) It is a tough title to dodge as last autumn he published startling results from his pursuit of a new energy source in one of the journals of the American Physical Society, AIP Advances.

Svein Olafsson characterizes Holmlid as follows, – Until now, cold fusion research groped blindly, because we have not had any credible theory about what’s going on. But with Holmlid work we have a path that we can start walking. I would not be surprised if Holmlid ends with getting the Nobel Prize for what he now found out, says Olafsson.

Impossible according to the current laws of physics

There are several things that make disregard for cold fusion natural among physicists in general. Fundamental physical laws dictate namely two things: One is that any nuclear merger/fusion process must emit radiation, and the second is that the so-called Coulomb barrier must be exceeded to initiate fusion.

The Coulomb barrier is a force between atoms that prevents everyday nuclear reactions by pushing reactive nuclei apart. Traditional theory suggests that one must up the energy levels of atoms to the equivalent of a temperature of millions of degrees to start a process that will begin to allow nuclei to collide, merge and release large amounts of energy through fusion.

COLD FUSION magazine covers spring 1989. News coverage of the cold fusion discovery ranked it at the time as the most intensively covered news story in history, a bigger story than mans first footsteps on the moon! – click to enlarge

Cold fusion researchers have for years claimed that they can initiate a merger process with some equipment on a desk. This has profoundly challenged the established scientific community who have refused to accept it since it was proclaimed in 1989.

When first declared the there-to-fore prestigious American Physical Society denounced it by calling for a show of hands at a press conference and claiming that the show of hands proved cold fusion could not have taken place since the scientists did not measure sufficient neutrons. (Editors note: The ‘high priest/inquisitors’ of APS physics conducted this ‘Kangaroo Court’ only four weeks after the news of the cold fusion energy discovery had gone worldwide.)

That Mysterious Rydberg Micro Matter

The physicists then knew nothing about, the extreme fabric ultra dense deuterium, which Holmlid later detected. This new cold fusion drug is admittedly not yet perfectly experimentally fully verified, but very close.

According Holmlid his Rydberg Matter has nevertheless a local density which makes it weighs mind-boggling 130 tons per. liter. If you had a milk carton with ultra dense deuterium in the refrigerator, the carton tunnel a hole through your house immediately.

The substance is 1,000 times denser than solar core. The quantities used in the experiments are fortunately only ultra thin flakes and is therefore not dangerous heavy. This material contains the secret that makes cold fusion is possible, according Holmlid.

I think it’s ultra dense deuterium that can explain all the results from experiments with cold fusion, he said.

It is worth noting that virtually all Cold Fusion/LENR experiments are using just hydrogen and deuterium, which in different ways are packed as closely as possible into a metal and then energized.

Cold fusion tests variability now understood

In ultra dense deuterium is the core particles according Holmlid theory become so dense that Coulomb barrier is no longer an insurmountable obstacle. With just a little extra energy begins nuclei to fuse and emit extremely high energy.

This theory may also explain why it is so difficult to repeat Cold Fusion/LENR experiments with similar results. The tests can appear to be simple to repeat, and it is published over 100 such repetitions since 1989, but the amount of energy that comes out is highly variable from time to time.

The reason is, according Holmlid the merger takes place in the microscopic fracture zones within the solid metal substances deuterium loaded in. Since it is impossible to create the interior of a metal sample 100 percent identical from time to time, it may become violent fluctuations in the effect of attempts to experiments, depending on exactly how the metal is composed.

Mysterious Muon Radiation (Mischugenons?)

When Holmlid initiated the process of laser pulse on ultra dense deuterium his work always revealed one or other form of energetic particles (radiation) out. But what kind? The researchers looked and looked for different types with different detectors. After much ado, they found eventually that laser pulse of ultra dense matter emits so-called muons, contrary to assumptions.

Olafsson is now accepted to give a talk about the experiment for the prestigious American Physical Society in April.

One of the “problems” with both Holmlid attempts and cold fusion research is that experiments only produce very little radiation. It’s no wonder that physicists most do not believe that it can proceed fusion at room temperature, because all fusion according to the  (former) ‘laws of nature’ MUST produce abundant dangerous unmistakable radiation. Another article by Holmlid and Olafsson found that even with no laser pulse a weak radiation arises similar to that detected in the second laser activated cold fusion experiments. Olafsson think that ultra dense deuterium may have two different methods to conduct a nuclear process.

Editors note: Read more about another discovery of crazy radiation, mischugenons, in the 1990’s described with the help of the real Dr. Strangelove, father of the hydrogen bomb Edward Teller.

Revives research from the 50’s

The interesting thing with the discovery of muons is that this is extremely coveted and rare particles. They can be used to conduct so-called muon-catalyzed fusion, which was discovered already in the ’50s. The method has never received special attention because muons are far too costly to produce.

Now therefore Holmlid discovered a rich source of the extremely coveted particles. The next step now is to use them to drive a fusion reactor. This he has already signed a contract with the so-called incubator at the University of Gothenburg to realize industrially.

The idea is to replace the dirty boiler in existing coal power plants with a pure fusion reactor, which is also much cheaper to operate because it almost does not need fuel. Already from the beginning there will be more economical with such a merger than to burn coal, thinks Holmlid. He believes that all the necessary scientific findings are now done. The professor thinks we already, in 2-3 years, could see a completely finished new energy technology ready for full-scale commercialization.

Unfortunately muon catalyzed fusion ordinarily is expected to produce much radiation. Next steps Holmlid will be to achieve muon cold fusion, which almost will not emit radiation. The muons it emits are so weak that they are stopped by a few centimeters of concrete or steel. In addition muons are negatively charged particles, effectively electrons! That means they can be used to produce electricity directly, without using the heat to first produce steam.

How about a fusion power plant in the basement?

Editors note: Perhaps Prof. Holmlid would like our Atom-Ecology Cold Fusion Simple Kilowatt™ heater now in development. It is no more complex or costly than an ordinary compact flourescent light bulb powered by a similar tiny input of electricity yet intended to heat an entire home.

Holmlid envisions that by the public should be able to buy small cold fusion power that will be the size of a small refrigerator. Such home power plants could produce 15 kilowatts. This is about what you need to keep your home with electricity. The device need not be greater in size such than it can be placed under the hood of an electric car instead of batteries.

The price, according Holmlid get depends on laser technology chosen, but probably will be at some ten thousand crowns (Norwegian currency 1 kr = 10 cents USD). Regardless of this cost this will be quickly recovered your for someone who has a house, which typically have 20,000 kroner in annual energy expenditure.

To cover a small country’s, like Norway, energy consumption for a year, Holmlid estimates that there will be enough energy provided by about 100 kg deuterium. 100 kg of deuterium costs at current rates no more than 700,000 crowns, that’s a mere $70,000!  Not good news for a country like Norway that lives off oil. But for the world as a whole wouldn’t something like that be an absolutely insane transformational energy revolution.

Is this too good to be true

The big question then becomes: Is this too good to be true? Holmlid has published the findings publicly, and the basic process he can therefore not take a patent on anymore. He has the right, the world is just in front of a solution to the whole problem of climate change, which many consider to be humanity’s greatest problem. When something sounds to be too good to be true, it is what often.

– Ultra Dense deuterium is not experimentally proven fully and it is so new and there are few scientific groups who have tried to repeat your experiments?

– Unfortunately, the biggest problem in this field lack of interest. I will help anyone who will try to replicate what I’ve done. Unfortunately it is not so very easy. But I hope someone tries. It would make everything much easier for me.


The findings of Holmlid and Olafsson, and also earlier findings on cold fusion field, is increasingly seen as credible among mainstream physicists. However not all, Physics Professor Dieter Röhrich at the University of Bergen has seen some of Svein Olafsson and Leif Holmlid latest publications for Aftenposten and also had a two-hour videoconference with them to clear up any confusion. Nevertheless, he is still very critical (verging on being what is characterized as a pathological skeptic, naturally so as his career is based on theories that will be up-ended as the reality of cold fusion emerges.)

Editors Note: Antagonist/skeptic Röhrich parrots the view of big money physics Vatican, aka CERN. He and his ilk have the most to lose as Holmlid’s work becomes accepted.

Röhrich acknowledges that any radiation from the experiments would be a sensational discovery, but is far from convinced.

“Many claim that they have discovered radiation are presented in the articles, but no irrefutable evidence presented. To measure an unknown radiation source is complicated, and I do not see that they have managed to do it”, he says.

– But now that the material is the accepted by the prestigious American Physical Society and was peer-reviewed by them, the picture changes.

He retorts, “peers are not infallible, and they can not – and should not – check everything. It does not have to be about a scam that I mean either. Most likely, the results caused by wishful thinking. It’s easy to get caught in their own world and not see the mistakes you make. That is why we in CERN has several experiments that largely does the same. A minimum is that experiments must be so nondescript that they can be repeated. But I do not even understand what they want to measure – muons, electrons, gamma radiation or neutrons,” says Röhrich. He acknowledges muon catalyzed cold fusion is possible, but notes that the muon lifetime is so short that the technology is unlikely to make practical application.”

Yet in the end he is not entirely dismissive to further explore the findings.

Svein Olafsson has been watching criticism from Röhrich.

“I understand actually criticism from Röhrich well. We had a good discussion, and I agree that probably 95 percent of everything that has been done within the cold fusion field is experimental error. Most have only using luck managed to produce energy. But the last 5 percent is scientifically published. Röhrich do not know cold fusion literature and have not had time to go through all these experiments. Therefore he shows a healthy skepticism which I respect”, says Olafsson.

Editors note: What Holmlid’s true peers have been saying for some years in published papers as opposed to off the cuff pontificating ‘wise cracks’.

“If as reported the state of ultradense deuterium exists, and if it is sufficiently stable to exist long enough, it could become for the release of nuclear energy as important as was the discovery of nuclear fission by Hahn and Strassmann. It is the purpose of this note that on purely theoretical grounds an ultradense state of deuterium cannot be easily dismissed.” – F. Winterberg 2009!

A New Norwegian Race For Heavy Water?

Svein Holmlid is a chemist and nuclear work is not his specialty. Olafsson, who is a physicist, points out however that Holmlid is at home because his first discovery in 2008 was done with standard experimental methods of physical chemistry, and had nothing to do with the exotic cold fusion/lenr.

“Holmlid experiments are structured so that any minimal sign of radioactivity is a simple, beautiful, strong and irrefutable evidence that reveals immediate consequences in the saga and mystery of cold fusion. Such cold fusion is observed in over 100 published articles since 1989. But experiments where radioactivity can be turn on and off in a controlled manner – like his, is not possible by any known theory,” he says.

He points out that he does not claim to have resolved the matter and found the one answer, the ‘Holy Grail’ of energy physics.

“But we claim that we have found something that requires explanation. In order to progress, we need lots of additional research and help from other groups. We three scientists can not do this job alone,” emphasizes Sveinn Olafsson.

Various groups of course are arguing about this new physics reality for a variety of reasons. Where does oil nation Norway show up in this? It may be worth recalling that the more popular name of ‘deuterium’ is ‘heavy water’. Are we seeing evidence of a secret battle for or against heavy water? This begins to remind one of the famous Norwegian role in producing heavy water during World War II at the ultra-secret Nazi Vermork plant that was destroyed it what historians describe as perhaps the most important military action of World War II by the ‘Hero’s of Telemark’.

Father and Son

Father and Son cold fusion moves into mainstream Norwegian industry.

Let’s head back to smoke ( the industrial side of town), there’s father Sindre Zeiner-Gundersen watching his son’s PhD degree. M.Sc. Day Zeiner-Gundersen has even two doctorates, is chairman of small Norse AS and sets with the money and the laboratory that makes it possible for his son to carry out research funded by industry. Today has followed the Cold Fusion/LENR field since 2001.

Sindres father Day Zeiner-Gundersen has even two doctorates and has been anxiously engaged in cold fusion for many years already.

Norse AS have seen enough that we now know that Cold Fusion/LENR gives a real effect. But one should be very careful with quick conclusions since possible sources of error are numerous. There is surprisingly little LENR research in Norway, a discipline that several players around the world are researching. Very much of the research we are doing in this country has a little too much with a “snuggle research.” (That’s Norwegian slang for ‘cozy uncontroversial research.’) Maybe the petroleum crisis will get Norway to wake up? We certainly can not continue as we have done. At 50 years, we have people contaminated (with fossil fuel fumes) as much as throughout human history. Future challenges in energy must be resolved by examining several options, including the controversial,” says Dag Zeiner-Gundersen.

Are you interested in this technology that can save the world further disaster?

A major essay has just appeared in the highly touted AEON Magazine by Huw Price, who is the Bertrand Russell Professor of Philosophy and a fellow of Trinity College at the University of Cambridge. He is also Academic Director of the Centre for the Study of Existential Risk.  His AEON Essay is titled, “The Cold Fusion Horizon, Is cold fusion truly impossible, or is it just that no respectable scientist can risk their reputation working on it?”Prof. Price tells the story of a remarkable demonstration just concluded in Florida where a megawatt of cold fusion power has been used in an industrial plant for more than 1 year!

Aftenposten has written several reports concerning various aspects of cold fusion. Much credit goes to Aftenposten for their great journalist work in the field, you may read the original wording of the story in Norwegian there.

A scientific slide show on the work of Homlid and Olafsson is available here.


In the time it would take you to screw in an energy saving lightbulb you can share the good news of cold fusion in social media

Tags: "cold fusion", "heavy water", aftenpost, holmlid, hydrogen, lenr

One thought on “Cold Fusion Research Papers

Leave a Reply

Your email address will not be published. Required fields are marked *